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Abstract 

Bell's inequality,  as it is generally unders tood,  is a relation involving average values over 
the  readings o f  the  apparatuses  when  d ico tomic  observables are measured,  which  can 
be derived on the  basis o f  local h idden variables and can be  violated by q u a n t u m  
mechanics.  We derive a Belt t ype  inequality, involving average values o f  physical  
quanti t ies  whose q u a n t u m  mechanical  operators need not  be  two-valued, under  the  
hypothesis  tha t  composi te  sys tems are described by "proper"  mixtures  (i.e., statistical 
mixtures  in the  ordinary sense). This inequali ty is analyzed in detail for t he  case o f  a 
J = M = 0 s t a t e  decaying into subsys tems  I, II w i th  any  f and  when  average values o f  the  
quan t i ty  (J- 'd)I ® 0 +- b)II are considered; it is t h en  found that  it cannot  be violated if 
j > -~ b y  the  q u a n t u m  mechanical  descript ion o f  the  composi te  sys tem in t e rms  of  a 
"second-kind state ."  A theorem is, however,  established proving tha t  in the  general case 
suitable observables can be in t roduced for which  a violation by  q u a n t u m  mechanics  
could b e  observed. This  encourages the  work in progress on  more  general  s i tuations and  
observables. 

© 1977 Plenum Publishing Corporation. No part of  this  publicat ion may  be reproduced,  
stored in a retrieval system, or t ransmit ted,  in a n y  form or by any means,  electronic, 
mechanical,  photocopying,  microfilming, recording, or otherwise,  wi thou t  wri t ten 
permission of the publisher. 
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1. Introduction 

Quantum mechanics (Q.M.), since its codification in the late twenties, has 
known such imposing successes in the interpretation o f  physical reality that 
the opponents o f  the standard or, as it was named, orthodox interpretation 
were deprived of  any real possibility of  pursuing their efforts towards alter- 
native formulations. Typically, Von Neumann's theorem on hidden variables 
(H.V.)- though,  as is now generally accepted, 1 did not meet the very problem 
it was aimed a t -was  taken as proof  that no alternative interpretation could 
be developed that would agree with the known experimental data. 

Only fairly recent ly-and after a feeling of  dissatisfaction had spread 
among research workers, particularly in the field of  high-energy physics, for 
the inadequacies o f  the theoretical approaches and the fragmentary pattern 
emerging from the data-has  the debate on the fundamentals of  Q.M. been 
reopened. 

After Bohm in a pioneering work had proved that a nonlocal H.V. model 
could give the same results as Q.M. (Bohm, 1952), Bell observed that very 
simple local H.V. models could be conceived that did not meet the pre- 
requisites of  Von Neumann's theorem, thus showing that they were too 
restrictive (Bell, 1966); on the other hand, though it was true that no local 
H.V. theory could reproduce all the results of  Q.M., Bell showed (Bell, 1965), 
for dicotomic observables, that the quantum mechanical predictions con- 
cerning the class of  experiments for which Q.M. could really be tested against 
local H.V. theories had never been adequately performed (see, for instance, 
Capasso et al., 1970). 

It  has been shown since (Capasso et al., 1973) that for dicotomic variables 
the observable differences are linked to the presence, in the quantum 
description, of second-kind states, i.e., states of a composite system (such as 
for instance a singlet state composed of  two spin~ states), which cannot be 
factored into pure states of  the subsystems, as opposed to first-kind states. 
In other words, the quantum mechanical treatment of  composite sys tems-  
which is certainly correct, at least as far as localized systems are concerned 2 -  
had never been seriously tested before the seventies in connection with other 
features. 

Even more interesting was the circumstance that the early and crucial con- 

I One can read in Belinfante's treatise (1973) on Hidden Variables: 
I always have been puzzled how people could ever have been convinced by 
yon Neumann's arguments that hidden variables could not be introduced. The 
lack of validity of (31) [the crucial hypothesis on the tinearity of the mean 
values] should have been obvious to anybody by inspection... The truth, 
however, happens to be that for decades nobody spoke up against yon 
Neumann's arguments, and that his conclusions were quoted by some as the 
gospel. 

2 For instance, antisymmetric (second-kind) states are necessary for an understanding 
of the stability of matter in the light of the Pauti principle. 
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ceptual difficulties of  Q.M.-l ike the Einstein-Pod01ski-Rosen (E.P.R.) 
paradox and the problem of  measurement-a l l  derived from the presence of 
second-kind states, as was more generally the case with every quantum 
mechanical feature that can be loosely speaking described as a nontocal 
effect. 

I t  has recently been argued (Capasso et al, 1973; Baracca et al., 1975) 
that in principle Bell's inequality actually allows one to discriminate between 
a description of  composite systems by means of second-kind states (or, in 
terms of  the ensemble on which the statistics of measurements is recorded, 
improper mixtures) or by  means of proper mixtures (i.e., mixtures in the 
ordinary sense), rather than Q.M. and local H.V. theories. (A rederivation of  
this result for general observables with a discrete spectrum is given below.) 

Of course, a description in terms of proper mixtures of  first-kind states a 
is intrinsically local and non-quantum-mechanical; not every, and not only 
local H.V. theory need be formulated in terms of  proper mixtures. 

2. First- and Second-Kind States: Mean Values 

Since the central point of  our argument is the observable difference 
existing between the first- and second-kind states, we start with a recollection 
of the main definitions. We consider a system I + II composed (for simplicity) 
of  two subsystems I and II. Let 21~ I, ~ I I  be two observables of  the two sub- 
systems, having, respectively, the eigenstates [q~i), l~i) 

/l?/I I ~/)= rnil~) 
(2.1) 

./VII l~]) = mj [~ j )  

The system I + II may be in two different physical situations. From the 
point of  view of Q.M., if a state vector is assigned to the global system I + II, 
it must be written in the form 

I ~ I + n ) = ~ w~/21 q~xk ) [ ~ox ) (2.2) 
k 

where [by a theorem established by Von Neumann (Von Neumann, 1932) 
and discussed in a previous paper (Baracca et al., 1974)] the rearrangement 
connected with the subscripts Xk, pk allows us to write a single sum with real 
coefficient, since wk ) 0 .  This is a state of  the second kind according to the 
nomenclature previously introduced: Notice that in this situation neither o f  
the two subsystems has a state vector, a feature that implies a "nonlocal"  
character and is the origin of  the paradoxical aspects connected with Q.M. 

A different situation is one in which we are given a collection of  a great 
number  of  identical systems I + II, each being in one of  the possible state 
vectors [qSxk)l~o k) with an assigned weight, which we choose as wk in order 

3 Proper mixtures of second-kind states (or mixtures of the third kind) are also of 
physical interest (G. Ghirardi, private communication). 
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to have the maximum similarity with case (2.2); such a situation is described 
ffl+II by a density operator ~(PR): 

~r(I + II 
PR) = ~ Wtc [ q~Xk>l~pk>(~pk [<0Xk[ (2.3) 

and is called a "proper"  mixture (of  course, of  first-kind states). 4 It has lost 
the "nonlocal" features of  case (2.2). 

A density operator may obviously be written for the state (2.2): 

O~+II ~1+n><~I+II v2 112 IM) = I I = ~ W k Wk [(pkk)l~pk)(~pk, I @kk,) (2.4) 
k, k' 

which differs from (2,3) for the presence of  nondiagonal terms. 
We shall be concerned with the mean values LdI/} u) of  operators, defined 

in the overall Hflbert space, of  the form 41 ®/}n  for which we have 

(dI/} H) = Tr (&I + u dl/} n) (2.5) 

We must distinguish the following two cases (Baracca et al., 1974): 

2.1. Proper Mixture (State Vector o f  the First Kind): If  ai, b I are the 
eigenvalues of  the two observables, one gets, using equation (2.3), 

(AI/}II) = ~ ai, bi ~ wk[(ail  q~Xk )121(bjl}Pk)[ 2 
i,j k 

= ~ wtc ~ ail(ailq~xx)l 2 ~. bjl(bil~px)l 2 (2.6) 
k i 1 

= ~ wk(Ak)(Bk)  
Ic 

where Glk), (Bk) are the mean values of  A l,/}n when the system I + II is in 

the state l q2 k) = tOxk)t~Ok). 

2.2 Improper Mixture (State Vector o f  the Second Kind). One gets, 
using equation (2.4), 

~IBII> = <4J I d '  ®/}II I ~> 

= ~ aibj I ~. wI/2 ( ~k k [ ai) (~Ptc [ b] )[2 (2.7) 
l,] k 

= Y. Wk(&)<Bk) + ~, &,k' 
k k ,k '  

(k ¢ k') 

4 Once it is recognized that Pk = f(Pk k ) (~hkl and Qk = I ~pk > (~pkl are the density 
operators describing the pure states I~k k) and I ~pk ), respectively in subsystems 
I and II, (3) can be profitably compared with Jauch's (1971) expression for the 
density matrix describing his systems, f p(ce) p~ Qa da, that can be inferred from 
the context of his paper and can then be interpreted as an extension to continuous 
spectra. 
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I k , / c '  = ~ .  1/2 1/2 , Wk Wk' ai ~ ~" k I ai > (ai I ?px k, ) b] ( ~Pk l b l ) <hi I }Pk' ) 
t ,] 

1t2 1 t 2 ,  . &, k '  = wk wx' ~ *xk IA I ~xk'><}p,,,:' tB I }pk,> (2.8) 
Expression (2.8) is the well-known interference term appearing for improper 
mixtures, 

3. Observable Difference between Proper and lmproper Mixtures for  
Discrete Multivalued Observables 

Let us consider observables .~I,/~II, OII,/)I having a discrete spectrum 
such that 

i<d~) ] ~<M I, [<b~> l <~M I 

1@~'>1 < M  H, I<C~>t < M  II 

and write 

(3.1) 

M 2= M I-  M 'I  (3.2) 

We start from the obvious relations 

E w k  = 1 
k 

t <a~b-  <e~b l + I<a~> + <c~I>l-< 2M ~I 

They imply that 

Wk 1 </~II>- <CII> [ + ~ Wk { {/~kIl> + (CII> I • 2M II 
k k 

This in turn implies that 

y w~ I ca~'>l-i <&'I>- <a~'I> i + X wk l<b~> I. 1 ~ >  + <a~">l < 2 ~  
k K 

and finally: 

] ~ Wk (j~I>{</~II>_ (0If)} i + [ ~ Wk <hi){</}II> + <Oil>} i < 2/]42 
k ~= 

which may be written using equation (2.6), i.e., proper mixtures, as 

1Lz~'/}II> _ LdIdI'>[ + i<bl/}n> + <bid41> i ~< 2M = (3.3a) 

and finally 

[ <dI/}II>_ (~I(~n){ +_ {</~ijgII ) + </~IOiI>} ~< 2M 2 (3.3b) 
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This is a generalization of Bell's inequality, which is recovered when 
M= 1. We conclude that Bell's inequality does not necessarily imply the 
existence of local hidden variables, but only of "locality" in the sense of 
proper mixtures. In the following sections we show that it can in fact in 
principle be violated by second-kind states. This had already been shown by 
Capasso et al. (1973) for dicotomic observables. 

In this paper we limit ourselves to considering states with vanishing total 
angular momentum; we then show that actually, if the mean value of the 
operator (j" l~) I @ (j" ~)II in this state is considered, where ~ and b are any 
two directions, then inequality (3.3) can never be violated if the angular 
moments of the subsystems exceeds 1. ~, it can, however, be violated if par- 
ticular couples of observables, whose physical meaning is analyzed, are 
considered. 

The case of  general t J, M)states will be considered in a forthcoming 
paper, together with an extension to observables described in general by 
vector operators. 

Inequality (3.3)can of course also be derived on the basis of a local H.V. 
theory;it  can then be considered as an extension to nondicotomic observ- 
ables of the original Bell's inequality. Two points deserve some attention: In 
the first place, it must be noted that our mean values, such as L4/~) are akin 
to the P(a, b) of  Belt's theory but not quite conceptually equivalent; the 
P(a, b) arise in fact from averaging upon the readings of the apparatus (con- 
ventionally taken as + 1); our mean values are in principle obtained as 
averages over observed values of the dynamical variables. This proves, as we 
have just seen, to be no obstacle to a treatment of the problem on the same 
footing. A further difficulty seems to arise when trying to derive the afore- 
mentioned generalization in terms of the P(a, b), inasmuch as it is a wide- 
spread conviction that both the dicotomy and the limitation (by unity) of 
the amplitudes of the variables at hand play an essential role. As far as the 
latter point is concerned, it is quite trivially concluded that the above limit- 
ing values must be only a matter of scale, i.e., of units; as to the dicotomy, 
we need only stress that the recent derivations (Setleri, 1972, 1974) of 
Bell's inequality make no essential use of it (an explicit derivation is given 
in Appendix A). 

4. Second-Kind States (Improper Mixtures). Case A: Mean Values of  
Angular Momentum Correlations 

Once it is proved that Bell's inequality can be trivially extended to multi- 
valued observables, it becomes of interest to evaluate the quantum mechanical 
values of the (_~/}) for cases of physical interest. 

With reference to the E.P.R. (or Bohm-Aharonov, 1957) situation, the 
mean value of the observable (j "6) ® (]" $) in the singlet state was considered. 
The most obvious generalization is obtained by considering the mean value 
of the observable (j" ~})I®(j./;)II in a state J = M = 0: this could be the case 
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of the 3' decay of a spin - 0 nucleus, s We shall then be concerned in this 
section with the evaluation of (00 lj "aj" b l00 )and the discussion of the 
result quoted in the preceding section concerning the impossibility of violat- 
ing equation (3.3) for spins of the subsystems higher than ½. One has in 
general 

(00 i j -a j - / ;  ]00) = -½j(j + t) cos/3 (4.1) 

where/3 is the angle between directions ~ and b and/' is the angular momentum 
quantum number of either subsystem. 

Vector Model Derivation of Equation (4.1). This result is most easily 
physically understood in terms of the vector model. In this model the state 
of vanishing total angular momentum is obtained with the two angular 
momentum vectors, of amplitude x/)=(j + 1), pointing in opposite directions; 
of course only 2] + 1 discrete orientations are allowed to each of them. If 
we let 0 la be the angle formed by the direction of the first of the vectors 
with d, the above orientations are determined by 

cos Ola(m ) = m/V~'(~' +" 1) 

Now, we have, for such a state 

j ' a j "  b = ( X ~ +  1) cos Ola) ( x / ~ +  1) cos 02b ) 

where 02b is the angle formed by the direction of the second vector with 
respect to b; alternatively, as 02b = rr -- 0 la --/3, if/3 = al), we have 

j "dj -b =JO + 1) (--cos 2 01a cos/3 + c o s  Ola sin Ola sin/3) 

The contribution of the odd term cos 01a sin 01a averages out to zero and one 
is left with 

(00 Ij -a j"/~ t 00) =/'(/" + 1) ( -cos  = Ola ) COS 

where 

as 

_ 1 i - - m  2 

(--COS2 01a) 2 f +  1 m ~  f ( 7 + l  ) - = _ .  
1 3, 

J 
~ m 2 =j(j + 1)(2/' + 1) 

m=l 6 

Equation (4.1) follows. A more formal derivation of this result is given in 
Appendix B. 

Once the above mean value is inserted, taking into account the minus sign 
and posing 

21 = (j. d)I, b I  = ( j .  £/)1, hlI = ( j .  ~)II, o n  = ( j .  ~)II, 

s We thank P. Camiz for suggesting this example. 
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inequality (3.3b) takes the form 

I cos (ab) - cos (¢c) I ~- {cos (db )+  cos (de)} ~< 6i/(] + 1) 

We are interested in the maximum value of  the left-hand side; one can easily 
see that it is obtained when the directions are coplanar and for the minus 
sign. As a consequence one is reduced to considering the inequality 

i cos t3 - cos /3 ' 1 -  cos (o~ - /3 )  - c o s  (~ - if) <~ 6]/(] + 1) (4.2) 

where 3,/3', c~ are respectively the angles ab, a~, ac/. 
Then we can easily prove the following: 

Theorem. (a) The maximum value of the left-hand side of  inequality 
(3.3) is 2x/2; (b) for improper mixtures [equation (2.4)], the mean 
values (4.1) of  the "angular momentum correlations" cannot violate 
inequality (3.3) for f > 1. 

Proof." The maximum of the left-hand side is trivially computed by equat- 
ing to zero the partial derivatives; notice that the expression is symmetric 
for the exchange/3 ,-,/3'; it is then immediately observed that (a) the expression 
on the left-hand side has maxima at 

7r 5 7 

3 3 
~-- - -  7[ 

/3=~-, /3'= ~ r ,  ~ 2 

which, substituted, give it the value 2x/~; (b) the right-hand side is obviously 
larger than 2XQ for]  >-~. It  is perhaps worth stressing that we are thus giving 
the prescription for a maximal violation. 

5. Second-Kind States (Improper Mixtures). Case B: Possible Choice o f  
Observables that Violates the Generalized Bell's Inequality 

We intend to show that, for the J = M = 0 state, suitable observables can 
be chosen so as to violate inequality (3.3) even for spins higher than 1. 

Let (lq~i)} and {l ~i )} (i = 1, 2) be normalized vectors belonging to a basic 
set in the vector spaces for subsystems I and II, respectively, and let us 
introduce the projection operators 6 

p~2) = [% i•l) + a2 1 qbz)] [ ~ ( ~ r l  + c ~ ( ~ 2 1 ]  (5.1) 

6 These operators have been introduced by Capasso et al. (1973); we are here trying to 
make use of them for the case of nondicotomic observables. 
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We choose as our operators A,/~, C,/} the following dicotomic observables: 

f)(i)  = ,~b(i) 1, i = 1 ,2  (5.2) I, II  z ~ I ,  II - -  

having the eigenvalues -+ 1 (we shall correspondingly refer to a Bell inequality 
with M = 1). 

Both the projectors t3 and the b have an immediate physical meaning when 
subsystems I and II can be described by two-dimensional vector spaces; this 
could be the case, for instance, if I and II are spin-½ particles and we are 
interested only in internal degrees of  freedom. In this case, if {I @)} and 
{[~i)  } are interpreted as eigenstates of  the spin operator along a given 
direction for subsystems I and II, respectively, a state such as a t t ~1) + a21 q~2) 
with 1% 12 + j % I s = 1 can be obtained through a rotation starting from 
t 41 ) and correspondingly interpreted; consequently, the/3 are projectors 
onto the one-dimensional subspaces of  given direction and the D are the 
corresponding spin observables. 

In tile case we have examined of angular momentum observables where 
{1 ~)i } } and {I ~i ) } are interpreted as eigenstates of  j2,  Jz, the projectors 
(5. t )  have no immediate physical meaning. This, however, produces no 
essential difficulty, once tile coefficients of  the second-kind state describ- 
ing the overall system have been experimentally determined, since it is easily 
seen that the mean values of  the external products of  the/3 operators are 
determined by the expressions 

(£}~i) ® / ) (~ )  ) = 1 

(b}l)  @ b(~) )  = 1~1[ 2 -- 2 [~sls(Wl + w 2 - ½) 

" - ' I  ~ ' n  :-Icql 2 - 2 la'sls(Wl + w  s - ½) (5.3) 

(/}{s) ®/)~2) ) = (w~ + w s)  {(t% I s - l c~2ts)(! 3~ I s - 132 t s ) - 1 } 

+ l + S R e ~ . w  1 w 2 UlU2b~lta2/ 

I f  W 1 + W s = t one recovers the results of  Capasso et al. (1973). 7 In 
terms of  these observables the inequality (3.3) takes the form 

[ ( / ~ t ) @  DI I-(1) ) - \*-*I"g(1) :~-" t%(2) x w  u i i  / I + \/E)(2) ~ A ( 1 ) I  w * , n  ) + (/3(s) ® g(2)oII ) [ ~ 2 (5.4) 

Then we can prove the following: 

Theorem. For any improper  mixture, the observables/3 can always 
be chosen in such a way that the inequality (5.4) is not satisfied (if 
no superselection rules are present). 

Proof. We strictly follow the procedure of  Capasso et al. (1973), retain- 
ing that in general wl + wa <~ 1. Using the observables/)i  the inequality 

7 Notice, however, (Baracca et al., 1974) that the coefficients w k are here real, while 
they are taken as complex by Capasso et al. (1973). 
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takes the form (Aa = [a I [z _ [a 2 [2, A 3 = I fil 12 -- [f12 [2) 

[ t a l l  2 - 21a212 [Wl + w  2 --  21-] "{" 1 + AaA/3(W 1 +W2)--  W 1 +W 2 

1/2 1/2 g* * 12 _ + 8 R e ( w 1  w2 a l a 2 / 3 1 3 2 ) l + [ 1 - [ [ 3 1  + 2 1 ~ 1 2 [ w 1 + w 2  ½]1<~2 
(5.5) 

We write 

8 Re t,.lc' 1/2,,v21/2.,*~.1~2 PT/32) = 8 wx/-~-~l w2 Re (~1 ~2/31/32) 

= 8x/-~1 w2 1 ~1 ] l a21 I/311 I/32 t Re ei(~°a~ - ~oa~ + ~031 - ~o3~) 

= 8V%xw2 l a l  I la2[ 1/311 I/321 cos (~a + ~b)  

where the ¢i are the arguments of  the complex numbers a i,/3i with obvious 
notations, and ~a = Ca, - ~%, qbb = ~0~, -- ¢~ .  Recalling that la 112 + 1~212 
= I t3112 + I/3212 = 1 one gets easily 

12 - 9-1a212(Wl + w2) + zX~a3(w~ + w2) - (w2 + w2) 

+ 2 ~ [(1 - Aa2)(1 - A/32)] 1/2 cos (e~ a + ~b)  I + 2 1/3212(wl + w2) ~< 2 

This relation is certainly violated if the other one without the moduli and 
with cos(~a + q~b) = +1 is violated, that is, if  the following relation holds: 

2 -  21a212(w1 + w 2 ) -  (wl  + w 2 ) + ~ a / X 3 ( W l  +w2)  

+ 2 ~  [(1 - A~2)(t - zX32)] 1/2 + 2 1/3212(wl + w2) ~< 2 (5.6) 

This relation may easily be written as 

2 ~  [(1 - -  A0~2)(1 - -  A/32)] 1 / 2  2 10t 212 - -  A/3(1 - -  A 0 0  < 0 
W 1 + W 2 

and this may be violated if 

2 ~  [(1 - aa~) (1  - zx/32)] 1/2 > (1 + A/3)(1 -- Zx~) 
W 1 + W 2 

We conclude that the original inequality (5.5) is certainly violated when 

( i + A a  1- -A/3t l /2  W l + W 2  (5.7) 
- --Ac~ 1 +~ -3 ]  >2X/-Wl "w2 

This condition reduces to the one of Bell (1966) when Wl + w2 = 1, that is 
for dicotomic observables (bidimensional "Hilbert" space). One may easily 
verify that there are values of As, A 3 that satisfy (5.7). 

We may also evaluate the maximum value of the left-hand side of the 
inequality; if we rewrite the relation (5.6) as 

2 + f ( A a ,  A/3, wt, w 2 ) < 2 (5.8) 
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we may equate to zero the partial derivatives of f with respect to AoL, &/3. We 
find the maximum value 

when 

4w 1 W2 
max f =  w2 + w2 + 2 w@-~lw2 (5.9) 

w I + w 2 
Aa = --A/3 = wl + w2 + 2 w@-~w~ (5.10) 

Through a tabulation of (5.9) we have found that tile maximum violation of  
(5.8) occurs for the dicotomic case when 

W 1 = W 2 = 0.5 (singlet or triplet m = 0 cases) 

m a x f  = 0.5 

when 

that is, 

2xa = -zX~3 = 0.5 

{ 1 ~ I  2 =~, la212 =¼ 

lthl 2 ~, lthl2 =-~ 

I t  should be noted that we find a maximal violation of 0.5. 
Fortunato (1974) finds a larger violation, for dicotomic observables, by 

generalizing the form of the projector P~I): 

~i~ ) [3'11~1)+721~2)1 * = [')'1 (~1[ + "/~ (~2 [] 

I t  does not seem very useful at the moment  to analyze such a generaliza- 
tion for multivatued observables; we try, rather, in a work in progress, to 
generalize all these results to more general states and observables than those 
studied in this paper. 

Appendix A 

We give here a straightforward extension of the original Bell inequality to 
nondicotomic observables; the derivation follows step by step a procedure 
worked out by Selteri ( t974),  for the dicotomic case. 

Let us consider two couples of  dynamical variables Ai(a, X), Dl(d, X); 
BII(b, X), CII(c, X) (in Bell's notation), which are allowed to assume denumer- 
able sets of  values, limited, in some units, by M I and M II, respectively;the 
measurements will associate w i ~  these values equal numbers of  readings of  
the two apparatuses; there is no difficulty in interpreting M I and M 1I as 
upper limits, in some scale, for the above readings. In either case we thus 
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have [cf. equation (3.1)] 

IAI(a, X) I ~<M I , IDi(d,X)l<~M ~ 
[BiI(b, X)[ ~<M n, [ CII(c, X) [ ~ M  II 

we then define, as usual, 

P(a, b) = f dXp(X)AI(a, X)BiI(b, X) 

where the P(a, b) have definite meanings in both cases. Then 

IP(a, b) - P(a, c) I~< f d~o(X)[Al(a, ~,)BII(b, X) -- Al(a, X)CII(e, X) I 

= f dXp(X) IAI(a, X) I " I BII(b, X) - cn(c ,  X) I 

~ < M  I fdXp(X) I BII(b, X) - cn(c ,  X) l 

One has similarly 

IP(d, b) + P(d, c) l <~MIf dXp(X)IBn(b,  X) + cn(c, X) l 

whence 

t l'(a, b)  - P(a, c) I + I P(d, b) + e(d,  c) t 

<~M I f dXpCa)(IBn(b, X) - cn(c, X) I + t Bn(b,  X) + CII(c, X) I } 

From the inequality 

I BII(b, ~k) - CII(c, X) [ + I B II(b, )t) + C(c, X) t < ~/~II 

there follows, with M 2 ~- MIM II, 

IP(a, b ) -  P(a, c) l + IP(d, b) +P(d,  c) t ~< 2M 2 

Appendix B 
We give here a more formal derivation of equation (4.1) of  the text. Since 

we have for a J = M = 0 state 

I/YO0) = ~ I jmlJm2)(jmljm21]jO0) 
/q71, ?#2 2 

= ~ l i m j -  m ) ( i m i -  m IsT'O0) 
m 

and 

in general, we have 

(jm] - m IOO >= ( -  lY -  ~I,,/5-) + 1 
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(00 I j ' a j " /~  100) = 
( _ l ) 2 j - m - ~ '  

~ ,  2 ~ i  ( j m ' j -  m ' l j ' d j ' D l j m j -  m) 
m ,  m 

2j+ 1 
~ , ( - 1 ) 2 J - m - m ' ( j m '  Ij "dljm>(j - m' l j"/~ l J -  m) 

m~ m 

In a Cartesian frame x, y, z one has 

J" a = Jx cos (x'a) + jy cos ( fa)  + Jz cos (z"a) 

and similarly forj'/~. 
We can fix the reference frame with the plane coinciding with the plane 

determined by directions d and b and with 2? =d. Then we have 

c o s  ¢ v 5 )  = c o s  (yAh) = c o s  (z'a) = 0 

and 

j "d =Jx 

whereas 

J'[~ =ix cos (ab) +Jz cos (zb) 

Hence, as terms injxjz do not contribute in the sum, 

2]+tl t ~  ( ) ( ] m l ] x l / m ) ( j  l/x'J m>} (00t j .a j . /~100)=-7-- :  . - 1 )  i -m-re '  " ' " -- m' - 
\ /7"/~/t/~ 

cos (a~b) (B 1) 

Once the explicit expression for the matrix elements 

(jm' IJx I/m) = 1 ~ m ' , m + l  [(1" -- m)(1' + m + 1)1 I/2 

1 I /+  m ) ( j - -  m + 1) ]  v ~  + ~m' ,  m-  

is inserted, equation (B1) reduces to 

1 
(O01j "a j"/~ ] 00) = --~ 2 - ~  cos (a'b) 

i 
[ ( / -  m ) ( j + m + l ) + f f + m ) ( j - m +  1)] 

/'tZ = --/" 

The sum over m is easily computed to give 4/3 j ( j  + 1)(2j + 1) and equation 
(4.1) is recovered. 
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